Bariatric Surgery Patient and Endoscopic Treatment

Christopher Thompson MD, MSc, FACG, FASGE
Director of Therapeutic Endoscopy
Division of Gastroenterology
Brigham and Women’s Hospital
Harvard Medical School

Sept. 2011
Agenda

- Bariatric Basics
- Endoscopic Repair of Surgical Complications
- New Endoscopic Paradigm
Obesity

- Obesity is a metabolic disease
- Severe toll of comorbid illness
- Obesity more prevalent hunger
- Underserved group that requires a multidisciplinary treatment approach
Obesity

<table>
<thead>
<tr>
<th>Class</th>
<th>BMI Kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>18</td>
</tr>
<tr>
<td>Normal</td>
<td>18-24.9</td>
</tr>
<tr>
<td>Overweight</td>
<td>25-29.9</td>
</tr>
<tr>
<td>Obesity I</td>
<td>30-34.9</td>
</tr>
<tr>
<td>Obesity II</td>
<td>35-39.9</td>
</tr>
<tr>
<td>Obesity III</td>
<td>>40</td>
</tr>
</tbody>
</table>

Qualify for surgery

- BMI ≥ 35 with co-morbid illness
- BMI ≥ 40

NIH Consensus Conference, 1985

NIH Clinical Guidelines pub# 98-4083, Sept 1998
Pathophysiology

- Obesity is complex and multifactorial
- We don’t understand mechanisms of action for obesity treatments
 - Surgery likely hit multiple mechanisms
Diets and Medications Have Limited Efficacy

- 3-5% of dieters can maintain weight loss for 5 years

- Medication can achieve better weight loss than diet and exercise alone (3-5 kg), but with high rates of attrition (30-40%)

Bariatric Surgical Approaches

Lower Morbidity / Lower Risk
Less Effective

Higher Morbidity / Higher Risk
More Effective
Morbidity 23-77%
- 5-10% early
 - PE, resp failure, bleeding, infection, ulceration, bowel obstruction, leaks
- 15-40% late
 - ulcers, strictures, stasis, nutritional, hernias, and fistula

Mortality 0.5-1.5%

Morbidity 5-20%
- Pouch dilation 4%
- Ulceration 4%
- Migration 1.6%
- Band erosion 1.7%
- Port migration / abscess

Mortality 0.22%
Gastric Bypass Revision

- **Open Revision**
 - Early morbidity 15 to 50%
 - Emergent re-operation in 5%
 - Mortality 2%
 - Similar late complication rates

- **Laparoscopic Revision**
 - Technically challenging / arduous learning process
 - Conversion rates as high as 48% reported
 - More complications requiring early surgery vs. open revision

- Requires in-patient hospital stay

Endoscopic Evaluation

- Preparation
 - Require high doses for sedation
 - Difficult airway
 - Obstructive sleep apnea
 - Pulmonary hypertension

Anesthesia Consult
Normal Gastric Bypass Anatomy
Complications

- Anastomotic Ulcers
- Strictures
- Band Complications
- Fistulae and Leaks
- Weight Regain
Anastomotic Ulcers

- **Incidence:** 0.6 – 16%
- **Diagnosis:**
 - EGD
 - Pouch PH
 - H. pylori fecal antigen
- **Most common source of delayed hemorrhage**
- **Most common first 3 months post op**
- **Etiology:** acid, fistula, NSAIDs, H. pylori, ischemia, FB reaction
- **Treatment:** soluble PPI, sucralfate, remove contributory factors (NSAIDs, H. pylori, FB, ischemia)
- Surgery

Risk factor for marginal ulcer (MU) in a logistic regression model (100 MU and 90 controls)

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Univariate Analysis</th>
<th>Multivariate Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds Ratio [CI]</td>
<td>P Value</td>
</tr>
<tr>
<td>Years from Surgery</td>
<td>0.8 [0.7-0.9]</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2.5 [1.1-6]</td>
<td>0.03</td>
</tr>
<tr>
<td>Smoking</td>
<td>2.5 [1.5-5]</td>
<td>0.02</td>
</tr>
<tr>
<td>NSAID use</td>
<td>0.9 [0.4-2]</td>
<td>0.7</td>
</tr>
<tr>
<td>Inhaled steroid use</td>
<td>2.3 [1-5]</td>
<td>0.055</td>
</tr>
<tr>
<td>SSRI use</td>
<td>0.7 [0.4-1.2]</td>
<td>0.2</td>
</tr>
<tr>
<td>Gastric pouch length</td>
<td>1.2 [1.03-1.5]</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Abu Dayyeh, B. et al. DDW 2011
Postoperative Hemorrhage

- 1.5% incidence at endoscopy in under 24 hours for early postgastric bypass hemorrhage
- Slightly more common with laparoscopic approach
- Source typically at staple line
- Injection therapy
- Clips

Complications

- Anastomotic Ulcers
- Strictures
- Band Complications
- Fistulae and Leaks
- Weight Regain
Clinical Case

- Etiology: ulceration, ischemia, band complication
- Sites of stenosis and incidence:
 - Gastrojejunual anastomosis
 - Jejunjejunal anastomosis
 - Gastric band

- Treatment:
 - Balloon dilation: 66-93% successful, 2-3 sessions
 - Injection / steroid: often required
 - Jejunjejunal anastomotic stricture. She presents for second opinion. Next steps?

- Surgical revision
- FB removal

- Durable resolution of symptoms was achieved

Don’t Over Dilate!
Complications

- Anastomotic ulcers
- Strictures
- Band complications
- Fistulae andLeaks
- Weight Regain
Band Erosion

- Incidence 2%
- Due to inflammatory reaction
- Symptoms: Severe pain, nausea, emesis
- Treatment: Endoscopic removal, surgical revision

Different approach required
Clinical Case

- 48 y/o female who had 'obesity surgical' in 2005 in Mexico.
- Abdominal CT showed a foreign body in the jejunum and partial erosion of the adjustable gastric band.
- Presents with abdominal pain and small bowel obstruction.
- Suggestive of recent GI bleeding. No records are available.
- Surgical removal of part of the band would be able to be done to view buckle area.
- Pass lap wire thru band and apply mechanical lithotriptor.
- Remove with snare.
Complications

- Anastomotic ulcers
- Strictures
- Band complications
- Fistulae and Leaks
- Weight Regain
Leaks

- **Initial management**: Overall success rate 75-87%.
 - Radiologic drainage
 - Control leakage
 - Bowel rest
 - TPN
 - Fistulectomy
 - Low complication rates
 - Tissue preparation
 - Mucosal stripping
 - Other (fistulotomy with debridement, endoscopic spot welding, tissue adhesives)

- **Factors associated with poor outcome**:
 - Fistula to peritoneum
 - Esophageal or mediastinal fistula
 - High output infection (>200cc per day)
 - Diversion obstruction, persistent obstruction, high output, sepsis
 - Tissue adhesives (fibrin glue, plugs, matrix)
 - Other etiology

- **Treat infection**
 - Octreotide

- **Malignant, radiation, Crohn’s**

- **Other**
 - Duct stents and luminal stents

Rabago, LR Endoscopy 2002, 34:632
Lang, V. Surgical Endoscopy 1990, 4:212
Merrifield B, et al. GIE 2006 63;4 710-14
Leak Meta-analysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Year of Publication</th>
<th>No of Patients</th>
<th>Type of Stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fukumoto et al</td>
<td>2007</td>
<td>4</td>
<td>Polyflex stent</td>
</tr>
<tr>
<td>Babor et al</td>
<td>2009</td>
<td>7</td>
<td>Ella Boubella Esophageal Stent</td>
</tr>
<tr>
<td>Eubanks et al</td>
<td>2008</td>
<td>19</td>
<td>Alveolus and Polyflex Stents</td>
</tr>
<tr>
<td>Serra et al</td>
<td>2007</td>
<td>6</td>
<td>Hanarostent and Polyflex Stent</td>
</tr>
<tr>
<td>Eisendrath et al</td>
<td>2007</td>
<td>21</td>
<td>Ultraflex and Silky Esophageal Stent</td>
</tr>
<tr>
<td>Salinas et al</td>
<td>2006</td>
<td>17</td>
<td>Ultraflex Stent</td>
</tr>
<tr>
<td>Casella et al</td>
<td>2009</td>
<td>3</td>
<td>Ultraflex and NITI-S Esophageal Stent</td>
</tr>
</tbody>
</table>

Puli S, et al. DDW 2010
Forest Plot Showing Proportion of Leak Closure with SES

<table>
<thead>
<tr>
<th>Study</th>
<th>Proportion (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fukumoto et al 2007</td>
<td>0.75 (0.19, 0.99)</td>
</tr>
<tr>
<td>Babor et al 2009</td>
<td>1.00 (0.59, 1.00)</td>
</tr>
<tr>
<td>Eubanks et al 2006</td>
<td>0.84 (0.60, 0.97)</td>
</tr>
<tr>
<td>Serra et al 2007</td>
<td>0.67 (0.22, 0.96)</td>
</tr>
<tr>
<td>Eisendrath et al 2006</td>
<td>0.81 (0.58, 0.95)</td>
</tr>
<tr>
<td>Salinas et al 2006</td>
<td>0.94 (0.71, 1.00)</td>
</tr>
<tr>
<td>Casella et al 2006</td>
<td>1.00 (0.29, 1.00)</td>
</tr>
<tr>
<td>Combined</td>
<td>0.85 (0.76, 0.91)</td>
</tr>
</tbody>
</table>

Puli S, et al. DDW 2010
Gastrogastric Fistula

- **Etiology**
 - Mechanical
 - Nutritional
 - Emesis
 - Staple gun failure
 - Stricture

- **Complications**
 - Acid reflux
 - Epigastric pain
 - Jejunal ulceration
 - Stricture
 - Weight regain
 - No fistula over 2 cm remained closed
 - Fistula < 1 cm predicts better response with durable closure in over 30% (mean f/u 395 days)
 - 65% re-open at avg 177 days

- **Conservative Treatment**
 - Avg 2.2 sutures placed

New Larger Clips

OTSC® System
Clinical Case

- 40 year old female 5 years post-RYGB with iron deficient anemia and heme positive stools
- Normal EGD and colonoscopy
- Capsule study normal

Next steps?
Accessing the PB Limb

- **Standard enteroscope**
 - Challenging
 - Length of Roux limb
 - Acute angle of JJ anastomosis

- **Alternate techniques**
 - Double balloon enteroscope
 - ShapeLock enteroscope
 - Spirus
 - Surgical assistance
Complications

- Anastomotic ulcers
- Strictures
- Band complications
- Fistulae and Leaks
- Weight Regain
Revision: Weight Regain after RYGB

Revision: Weight Regain after RYGB

- Mechanisms not clearly understood
 - Hormonal changes
 - Dietary noncompliance
 - Alteration in gut flora
 - Anatomic considerations

- Surgical revision carries high rate of morbidity and mortality
Gastrojejunal stoma diameter is associated with weight regain after RYGB

Diagnosis

- Careful history
 - Dietary indiscretion?
 - Soft calories?
 - Nutrition consult
- UGI series
 - Fistulae
- Endoscopy
 - Stoma / pouch size
 - Length of Roux limb
Endoscopic Solutions for Dilated Anastomosis

- Sclerotherapy

- Suturing Devices
 - LSI ESD
 - Bard EndoCinch
 - EES Spiderman
 - USGI IOP
 - Endogastric Solutions StomaphyX
 - Apollo OverStitch

Thompson C. DDW AB, 2004
Anastomosis Reduction: Sclerotherapy

- **Spaulding, et al.**
 - 20 of 20 patients achieved diminished size of gastrojejunostomy to 10 mm
 - 15 of 20 patients achieved 9% EWL at 6 months

- **Abu Dayyeh, et al.**
 - 231 consecutive patients
 - 575 sessions of ST
 - 36% weight regain from nadir
 - Avg pre-op stoma size–19mm
 - Avg 2 session (1-3)
 - Avg 16 cc injected per session

Spaulding L Obes Surg 2003;13:254
Abu Dayyeh, et al. DDW 2011
Sclerotherapy: BWH

Mean 10 Lb
95th CI [7.7 – 11.8]
17% of weight gain

Mean 26 Lb
95th CI [23.5 – 29]
61% of weight gain
Sclerotherapy: BWH

Kaplan-Meir Plot of Time to Continuation of Weight Regain

Log-Rank 0.0032
Stratified log-Rank 0.01

2 or 3 Sessions

1 Sessions
Sclerotherapy: BWH

Total number of sclerotherapy sessions: 575

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal perforation</td>
<td>0</td>
</tr>
<tr>
<td>Admissions for post-procedural abdominal pain</td>
<td>3 (0.5%)</td>
</tr>
<tr>
<td>Bleeding</td>
<td>14 (2.4%)</td>
</tr>
<tr>
<td>• Stopped spontaneously</td>
<td>4</td>
</tr>
<tr>
<td>• Epinephrine injection</td>
<td>2</td>
</tr>
<tr>
<td>• Epinephrine and endoscopic clipping</td>
<td>8</td>
</tr>
<tr>
<td>Transient diastolic blood pressure elevation</td>
<td></td>
</tr>
<tr>
<td>• > 105 mmHg</td>
<td>64 / 425 (15%)</td>
</tr>
<tr>
<td>• > 25 mmHg from pre-procedure reading</td>
<td></td>
</tr>
</tbody>
</table>
Revision: RESTORE

- **Double blind**
- **Sham controlled**
- **2:1 randomization**
- **359 screened**
- **129 enrolled**
- **77 randomized**
- **% EWL at 6 months**
 - DGJR: 15.9 ±20.9
 - Sham: 7.7 ±20.18

Thompson CC, et al. DDW 2010
Obesity Treatment Options

- Diet/Draugs
 - Low Risk
 - High Effectiveness

- Bridge
 - High Risk
 - High Effectiveness

- Early Intervention
 - High Risk
 - High Effectiveness

- Revision

- Gastric Balloon

- Laparoscopic Gastric Bypass
- Sleeve Gastrectomy

- Gastric Banding
 - BPD/DS
 - Primary Metabolic Therapy

- Metabolic Surgery
 - Primary Therapy
Early Intervention: Spectrum of Care

<table>
<thead>
<tr>
<th>Non-invasive</th>
<th>Minimally invasive</th>
<th>Surgical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthopedics
Exercise / PT Meds</td>
<td>Arthroscopy
Exercise / Diet Meds</td>
<td>Joint replacement
Endoscopy
Surgical Procedures
CABG
Banding, RYGB</td>
</tr>
<tr>
<td>Cardiology
Exercise / Diet Meds</td>
<td>Angioplasty
Exercise / Diet Meds</td>
<td></td>
</tr>
<tr>
<td>Obesity
Exercise / Diet Meds</td>
<td>Endoscopy</td>
<td></td>
</tr>
</tbody>
</table>
Early Intervention: Endolumenal Suturing

- **Endoluminal Vertical**

![Graph showing %EWL for Subjects Completing 12M Follow-Up](image)

- **TRIM Trial**

<table>
<thead>
<tr>
<th>BMI (Kg/m²)</th>
<th><35</th>
<th>35-40</th>
<th>>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Excess Weight Loss</td>
<td>85.1</td>
<td>56.5</td>
<td>48.9</td>
</tr>
</tbody>
</table>

Thompson Ceta, DDW 2009 M1259
Metabolic: Implantable Sleeves

Randomized blinded pilot study (N=18)
- 12 sleeve
- 6 sham
- 24 week follow-up

Endpoints
- Primary HbA1c
 - DJBL Week 12 (n=8)
 - Sham Week 12 (n=3)
 - DJBL Week 24 (n=9)
 - Sham Week 24 (n=4)

7 point glucose profile
- 42% off OAD meds v. 17% sham

OAD medication use
- Weight loss - no sig change between groups

Conclusion

- Obesity is a major health concern that requires multidisciplinary care.

- Bariatric surgery is being performed more frequently and GIs will continue to see complications of surgery.

- Gastroenterologists should better integrate into bariatric centers of excellence and start taking a more active role in caring for these patients.
Bariatric Surgery Patient and Endoscopic Treatment

Christopher Thompson MD, MSc, FACG, FASGE
Director of Therapeutic Endoscopy
Division of Gastroenterology
Brigham and Women’s Hospital
Harvard Medical School

Sept. 2011